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My recent areas of physics research

• Applying coset space methods to spacetime symmetries
• Compactification

“Fully covariant spontaneous compactification” 
and RG posts

• GR and teleparallelism
“Tangent space symmetries in general relativity and teleparallelism”

• Roots of quantisation
“Correspondence between Classical Field Theory in a finite universe and 
Quantum Mechanics – position, wavenumber and momentum”



Overview of talk
• Particles, fields and rotations in classical, relativistic and quantum mechanics

• General relativity – reminder of key points

• Gauge fields

• Non-linear realisations: my introduction to physics research 

• Covariant compactification – motivation and aim of programme

• Covariant compactification – eigenvalues, product manifolds and gauge fields

• Covariant compactification – (first) field equation

• Covariant compactification – Spinors and SU(3)

• Covariant compactification – linear coordinate transformations and field configurations

• Covariant compactification – developing field equations



Particles, fields and rotations in classical, 
relativistic and quantum mechanics



Particles and fields in classical mechanics

Particles obey Newton’s 2nd law:
୧

୧

Forces potentials, e.g.
୧ ୧

Potentials are fields – they obey field equations, e.g.
ଶ G

In CM, ଵ ଵ ଵ G 

୧ t)



Scalars, vectors and rotations

m, and G are scalars:
• Single valued at t)
• Value invariant under rotations

, and are vectors:
• One component for each dimension
• Components transformed into each other under rotations
• Vector has a magnitude – a scalar – invariant under rotations



Special orthogonal groups

Definitions:
• Orthogonal matrix:

oTo = 1
• Special matrix:

|s| = 1

For a vector rotation:
୧

   ୨
୧ ୨

   ୨
୧ is both special and orthogonal.

• Such matrices form group SO(N)



Quantum mechanics

• In QM, ୧ t) ୧ where 

• Satisfies

where

and typically 
ଶ ଶ

ଶ
୧



Four-vectors

• Minkowski:
ஜ ଴, ୧

• Rotations & boosts mix these up:
ஜ

   ஝
ஜ ஝

though
ஜ ᇱ

ஜ
ஜ

ஜ

• Such matrices form group SO(1,3)

• In a more general spacetime with t time dimensions and s space dimensions
SO(1,3) SO(t,s)



Relativistic quantum mechanics - spin
SR + QM spin

This can be used to classify fundamental particles:

Spin Examples
0 Higgs
½ Electron, quark
1 Photon, gluon



Relativistic quantum mechanics – field 
equations
• Schrödinger’s equation – not relativistic

• Relativistic QM: complex wavefunctions  complex fields          
– these vary with the spacetime coordinates 

• For spin zero (scalar) fields, Schrödinger’s equation Klein-
Gordon equation:

• For spin ½ fields, Schrödinger’s equation Dirac equation:
1



Quantum field theories

In QFTs, a fundamental particle is seen as an excitation of the 
corresponding field:

Particle Field
Electron Electron field
Quark Quark field
Photon Electromagnetic field
. .
. .
. .



General relativity – reminder of key points



Tangent spaces

• GR: spacetime is curved (pseudo-Riemannian) manifold.

• Analysed using vectors in tangent spaces

• Scalar product on a tangent space:



Vector fields and connections

• Use “bundle” of tangent spaces to construct vector fields

• Coefficients of scalar product are metric tensor:

• Use connection to compare values of a vector field in different 
tangent spaces and calculate 

• Infinite choice of connections; GR: Levi-Civita connection



Riemann and Ricci curvature tensors
• Riemann tensor: field strength of the Levi-Civita connection

• Ricci tensor:

• GR: in any matter-free region

• Remainder of Riemann tensor in vicinity of matter

– this quantifies curvature gravitational field



GR field equation

• GR: matter distribution

• The field equation tells us how the energy-momentum density of 
matter at a given point relates to the curvature at that point:



Transformation under changes of coordinates

• Vectors and tensors have simple transformation laws – e.g. 

where

is an invertible, real matrix

• Such matrices form group GL(4, )



Gauge fields



Electricity and magnetism
Both electrical and magnetic phenomena recognised for centuries:
• Electricity – lightning and static
• Magnetism – magnets and lodestones/compasses

But not separate phenomena:

• In a dynamo, a magnetic field 
induces an electric current

• In a solenoid, an electric current 
induces a magnetic field



Electromagnetism

Electromagnetism

- an example of ‘unification’



Weak interaction and electroweak force

Weak interaction – radioactive β decay, fusion, supernovae

• Not separate from electromagnetism – unify at high energies: electroweak 
force

• Separate out at lower energies because of ‘symmetry breaking’ – see later



Strong force

A binding force:

• Binds quarks together protons and neutrons

• Then binds protons and neutrons together atomic nuclei

• Like electroweak force, described by a quantum field theory

• QFTs describe forces as mediated by gauge fields of unitary symmetries –
will explore this later



Grand Unified Theories

• Grand Unified Theories unify electroweak + strong 

– at high energies

• No unique GUT

• Simplest ones similar to electroweak unification – but predict proton 
decay:

• not observed

• predicted to be more frequent than consistent with 
experimental evidence



Special unitary groups

Definition - unitary matrix:
u†u = 1

• Unitary transformation of N-dimensional complex vector
୧ u   ୨

୧ ୨

looks like rotation – it preserves orthonormality on complex vector space

• Such matrices form group U(N)

• U(1) is composed of all complex numbers with |z| = 1 – changes of phase

• U(N) has SU(N) subgroup: matrices which are both special and unitary



Gauge fields - electromagnetism

• Quantum wave equations (Schrödinger, Klein-Gordon, Dirac) are invariant under 
constant phase factor…

• …but not under ‘local’ (varying) phase factor ఓ

• To make them invariant under ‘local’ change of phase, couple the field to a U(1) 
gauge field:

ఓ ஜ ఓ ஜ

where ஜ transforms according to:

ஜ ஜ
ᇱ

ஜ ఓ

- Maxwell gauge invariance identify U(1) gauge field with EM potential



Gauge fields – electroweak

Now take two complex fields ଵ and ଶ, each satisfying its own wave equation

• Quantum wave equations – invariant under ‘global’ U(1) and SU(2) 
transformation

• Can make them invariant under local SU(2) and U(1) by coupling to 
a set of 3 fields with appropriate transformation properties

- Gauge invariance identify SU(2) and U(1) gauge fields with electroweak 
interaction

ψଵ

ψଶ

ψᇱଵ = 𝑒௜஑ψଵ

ψᇱଶ = 𝑒௜஑ψଶ

ψᇱଵ = 𝑢  ଵ
ଵ ψଵ + 𝑢  ଶ

ଵ ψଶ

ψᇱଶ = 𝑢  ଵ
ଶ ψଵ + 𝑢  ଶ

ଶ ψଶ

U(1)

SU(2)



Gauge fields – strong force

Similarly, for 3 complex fields – we can ensure local SU(3) invariance by 
coupling to SU(3) gauge field:

ఓ ஜ ఓ ஜ
஑

஑

where ஑ are generators of SU(3) and ஜ
஑ = transforms according to:

ఓ
ఈ

ఈ ఓ
ᇱఈ

ఈ ஜ
ିଵ

ఓ
ିଵ



Key features of the fundamental forces

Gravity

• Described by a geometric field theory
• Relates to spacetime transformations     

(see T. Lawrence, Tangent space 
symmetries in general relativity and 
teleparallelism, Int.
J. Geom. Meth. Mod. Phys. 18 (2021) 
supp01, 2140008, 
doi:10.1142/S0219887821400089)

• Theory is in agreement with observations
• Within the heart of black holes, 

calculations result in infinities

Electroweak force, strong force

• Described by quantum field theories
• Theories of gauged unitary symmetries
• Calculating properties of particles and 

their interactions results in infinities
• Mathematical procedures can remove 

infinities
• Then results of theories are in 

agreement with observations
• But physical meaning of these 

procedures is unclear



Non-linear realisations: my introduction to physics 
research



My PhD

• Southampton, England: 1997 – 2001, under Prof. Ken Barnes

• On non-linear realisations of non-gravitational symmetries



Non-linear realisations

If bead is in centre of the shell:

then system is symmetric under 3D 
rotations: SO(3)

If bead is resting against shell itself: 

then system is only symmetric under 2D 
rotations, about an axis passing through 
the bead: SO(2) SO(3)

Non-linear realisations result when a symmetry is spontaneously broken. Consider 
a bead inside a spherical shell.

- see T Lawrence, Non-linearly realised O(3) symmetries, ResearchGate



Non-linear realisations

• Say the bead is at the ‘North pole’ – then system is symmetric under ௭

• Any other point can be reached from this by combining an ௫ with an ௬

• ௫, ௬ parametrised by  ଵ and ଶ - which can therefore be used as 
coordinates for the spherical surface

Action of rotations on these coordinates:

• transform linearly under SO(2)

• transform non-linearly under rest of SO(3)



-models & spontaneous symmetry breaking

Analogous situation in field theory – the SO(3) -model:
• take 1, 2 and 3 which transform as vector under SO(3)
• These form a flat 3D field space.
• Apply constraint i

i
2

• Solutions form a sphere 
• Can then replace 3 ( 2 1 2 2 2 1/2

• Now only have two physical fields: 1, 2 - or ଵ and ଶ

Constraint can result from a potential: 

V = 2 i
i

2 2

V is min (V = 0) for i
i

2, so vacuum manifold is sphere.



My PhD

Ken was interested in groups SO(1,5) and SO(2,4). Non-linear realisation of 
these:

My role: to calculate key quantities for this non-linear realisation

Linearly 
realised

Non-linearly 
realised

SO(1,3)

SO(2)or 
SO(1,1)



Spinor representations

N odd: N even: 

• Ken: key to calculating these quantities is looking at spinor representations
• Definition: Representation of a group G is another group G’ which has the same 

structure
• SO(N) groups:

G’ G
G’

G’’

G



Spinor representations

• Groups of n x n matrices, where N = 2n or N = 2n +1, e.g.
• SO(3): 1 spinor rep; 2 x 2 matrices
• SO(4): 2 spinor reps; 2 x 2 matrices
• SO(5): 1 spinor rep; 4 x 4 matrices
• SO(6): 2 spinor reps; 4 x 4 matrices
• SO(7 ): 1 spinor rep; 8 x 8 matrices

SO(t,s) groups also have spinor reps, 
• e.g. SO(1,3) has two 2-dimensional spinor reps – these describe spin 

½ fields.



Covariant compactification – motivation and aim of 
programme



Higher-dimensional theories

My focus:

• Theories with >4 D, in which

• The extra dimensions are space dimensions

• They are curled up, or ‘compactified’ – far smaller than atomic 
scales

• Applying GR concepts to this higher-dimensional spacetime 
gauge fields



Insight:

•+2D, rotation matrices in these dimensions form 
an SO(2) group 

•spinor rep is U(1) – gauge group of EM

• field equation could have SO(1,5) symmetry –
but only gauge group and Lorentz group realised 
linearly



Decompactification limit

• Consider a ‘decompactification limit’ – extra dimensions uncurl

• In this limit, all N dimensions appear on same footing (up to 
signature)

• Jacobian matrices form group GL(N, )



Using a multiplet to break GL(N, ) symmetry 

Key issue: choose fields for our equivalent of constraint i
i

2

• Note that i was (non-trivial multiplet) of SO(3)

• We therefore should not expect to use a scalar under coordinate changes 
to break GL(N, )

• GL(N, ) has N2 degrees of freedom; so does a rank-2 tensor ୍
  ୎

• We want to trigger compactification – so choose tensor containing 
metric/connection/curvature tensor

Insight: the covariant derivative of a vector does all this:

୍
୎

୍
୎

୍୏
୎ ୏



Aim of covariant compactification programme

Aim – to find:

1. Constraints on giving the correct symmetry breaking pattern: 
Lorentz, U(1), SU(2) and SU(3)…

2. A field equation/set of equations built from , …

3. …such that:
field eqn(s) + constraints GR + gauge theories (in 
appropriate limits)

Start by focusing on 1. – we can figure out a lot from it without needing 
field equations!



Covariant compactification – eigenvalues, product 
manifolds and gauge fields



Similarity transformations

Insight: under change of coordinates, action of GL(N, ) on is

• Preserves eigenvalues

• Multiplicities determine the ‘breaking pattern’ – which symmetries 
are realised linearly

• Eigenvalues are completely determined by traces of its powers:

tr ;      tr ;     tr ;     …



Diagonalisable tensors

• can be decomposed into symmetric + anti-symmetric parts. In 
mixed form:

= + ; 

• If tensor is diagonalisable, must be (mixed form of) symmetric tensor, 

• The presence of diagonalisable tensors tells us a lot about group 
theory + geometry of spacetime…



Example – Lorentz and SO(2)

…for example, if ୍
୎ can be diagonalised to

• it is invariant under GL(4, ) GL(2, ) 
• these invariance groups are unbroken symmetries
• valid in any coordinate system
• they contain Lorentz group and an SO(2) group



Diagonalisable tensor fields and product 
manifolds
If any such tensor field ୍

୎ can be diagonalised to this form across a region of 
spacetime, then 

• the spacetime coincides with a product manifold across that region (see 
following slides) 

• dimensionalities of its factor spaces = multiplicities of the eigenvalues

For proof, see T. Lawrence, Product manifolds as realisations of general linear 
symmetries, (2022), Int. J. Geom. Meth. Mod. Phys., 

doi:10.1142/S0219887822400060

Note: and don’t need the same values everywhere – just the same 
multiplicities (thus scalar fields)



Product manifolds - definition

• Spaces with a block diagonal metric, in appropriate coordinates:

• Not unusual – most spacetimes of interest in GR are products of 4 1D 
spaces:



Product manifolds – simple examples

2D flat plane
• Draw a straight line through it; take 

distance along this line as a coordinate x
• Straight line cross-section at each value of 

x; distance along this line is the second 
coordinate y

• In this sense, plane is a product of a two 
straight lines

• These lines are its factor spaces

2D cylinder
• Draw a line along the length of the 

cylinder; take distance along this line as a 
coordinate, x

• At each value of this coordinate, there is a 
circular cross-section. Distance moved 
around this circle is the second 
coordinate, s

• Cylinder is therefore a product of a line 
and a circle

• The line and the circle are its factor 
spaces

y

x

x

s



Product manifolds – example: tube

Tube of varying radius

• This still has a line along its length, which can be used to define one coordinate, x

• Still has a circular cross-section at each point on this line, so can be used to define 
second coordinate, s

• But now the size of the circle varies along the line

S

x



Product manifolds and Kaluza-Klein theories

Given how common product manifolds are, my result may not seem too impressive

But it’s important for Kaluza-Klein:-

If ୍
୎ can be diagonalised across a region to

Then
• the higher-dimensional spacetime coincides with a product space across a region
• one of the factor spaces is our usual four-dimensional spacetime



Product manifolds and Kaluza-Klein theories

On such manifolds, we can decompose tensors in terms of the factor spaces, e.g.



The ‘cylinder condition’

Similarly, the Levi-Civita connection components can be assembled into 
subsets:

• Several of these vanish if is independent of the coordinates

• This means cross-section of tube-like spacetime is 



Gauge fields as connection components

If we use:
• ଡ଼ coordinates on the 4D spacetime
• coordinates with orthonormal basis on the other factor space

then ஝௑
    ଢ଼ become gauge fields of SO(N) – or equivalently, corresponding 

unitary symmetry, e.g.
• for +3D, with appropriate assignments,

ஜ
௒

ஜ
௒

ஜ
୧

୧ ௑
௒ ௑

• for +2D

ஜ ఓ ஜ ஜ
∗

ఓ
∗

ஜ
∗



Field strength as Riemann tensor components

• can be found in Riemann tensor components for these 
coordinates

• It doesn’t contribute to or 

• We can view gauge fields as variations in “radius” along “tube”



Summary so far

Construct gauge fields as follows:

• Define ୎ and ୍
୎

• ୍
୎

୍
୎

୎
୍ forms ‘orbits’ under changes of coordinates

• Orbits containing diagonal matrices characterised by ୍
୍

୍
୎

୎
୍

୍
୎

୎
୏

୏
୍ ,…

• If these result in same multiplicities of eigenvalues over region:
• Spacetime coincides with product space
• Invariants determine dimensionalities of factor spaces
• Each factor space has its own curvature. 
• Unitary gauge fields can be found in connection components; field strength in 

Riemann tensor components



Points to note

Note that:

• We have not yet used the antisymmetric part:   

• We have not yet used any field equations



Covariant compactification – (first) field equation



Field equation and scalar invariants

• Field equation curvature and matter distribution. Derive by 
• constructing Lagrangian (density) from invariants 
• applying Euler-Lagrange equation

• For ୍
୎, invariants are again traces of powers; 2nd looks like a kinetic term:

୍
୎

୎
୍

• But want extra dimensions to be tightly compact – need a mass term: 

୍
୍

• Therefore try

୍
୎

୎
୍

୍
୍

where is a constant (dimensionful, but invariant and constant across spacetime)



Lagrangian and Euler-Lagrange equation

• Principle of Least Action Euler-Lagrange equation:

୍ ୎
୍

୎

• Can also be derived as simplest generalisation of Poisson equation for 
gravity for a vector field which is:

• consistent with general covariance
• consistent with equivalence principle

• This method provides a value for :

ଶ

where is vector field’s density



Ricci form

By using the relation

we get the following form for the E-L equation:

Insight: this is an eigenvalue equation for 



An operator equation incorporating geometry

Compare and contrast it with key equations in QM, RQM and GR:

• Like Schrödinger, Dirac and Klein-Gordon, it has a second-order 
differential operator

• But those three assume (pseudo)-orthonormal coordinates on:
• A flat 3D space (Schrödinger)
• A flat 4D spacetime (Dirac and Klein-Gordon)

• By contrast, this incorporates geometry into the operator

• Like Einstein field equation, it relates geometry to matter



Solutions – starting observations

Further work needs to be done on solutions – but this may not be final 
field equation of theory (see later)

We can say:

• Unlike solving Schrödinger eqn as undergrad, vector is not only 
unknown – also is unknown in operator

• Solutions would give relation between geometry and 

• Doesn’t tell us about action of operator on other vectors



Solutions – early thoughts

• There are values of  ୎
୍ for which every vector is an eigenvector – when 

 ୎
୍

 ୎
୍

- Einstein manifolds (for D>2)

• May be similar cases for  ୎
୍ ୍

୎

• Also solutions for specific ୐

• For ୎
୍

ଡ଼

ଡ଼

product of Minkowski spacetime and two-sphere is solution 
– vacuum manifold of 6D Kaluza-Klein theory



What we’ve done and what’s missing 

What we’ve done (so far) What’s missing (so far)

Field equation which contains geometric d.o.f. SU(3) gauge fields

Constraints Product spacetime Quarks, leptons

4D gravity Electroweak symmetry breaking (Higgs?)

SU(2) and U(1) gauge fields Quantum numbers

Solution representing classical vacuum Field equation for gauge fields















Covariant compactification – spinors and SU(3)



Spinors

• Include spinor reps in the model using Dirac’s kets & bras notation

• If transforms as d-dimensional spinor rep of SO(N), 

• Ket space has inner product, 

• Inner product defines a ‘spinor metric’: 

• Not symmetric – instead satisfies



Transformations on spinors

Ket spaces can then be analysed in a similar way to tangent spaces
Tangent space Ket space

Vector has N real components 𝑉୎ - relating to 
particular basis on tangent space

Ket has d complex components ψ஑ - relating to 
particular basis on ket space

Basis transformed by real invertible N x N matrix 
𝑗ஜ

   ச ∈ GL(4, ℝ)
Basis is transformed by complex invertible d x d matrix 
𝑧஑

  ஒ
∈ GL(4, ℂ)

(Pseudo-)orthonormal basis on tangent space 
preserved by (pseudo-)orthogonal matrices 𝑖ஜ

   ச
Orthonormal basis on ket space preserved by unitary
matrices 𝑢஑

  ஒ

One tangent space at each point in space(time). Use 
“bundle” of tangent spaces to construct vector fields

Attach ket space to each point in spacetime.
Use “bundle” of ket spaces to construct spinor fields



Spinors as complex tangent vectors?

• Can postulate complex, curved d-dimensional manifold, 

• Then 

• Then GL(4, ) represent change of coordinates

• Not necessary for most of the analysis…

• …but may help for spinor field equation – see later



Outer products

• To each ket, there corresponds a bra, with components

஑ ஑ஒ
ஒ

• Create outer product ஑
ஒ - has d2 components

• This matrix can be written as complex linear sum of generators of SU(d) and 1
- e.g. for SU(2)

஑
ஒ ଵ

ଵ ஑
  ஒ ଶ

ଶ ஑
  ஒ ଷ

ଷ ஑
  ஒ ସ 1 ஑

  ஒ

• Transforms by conjugation under ஑
  ஒ (and hence ஑

  ஒ):

஑
ஒ

஑
  ஒ

஑
ஒ ିଵ

஑
  ஒ



Diagonalising the outer product

• When all s are real, ஑
ஒ is Hermitian

• Hermitian matrix may always be diagonalised by an appropriate unitary one

• Again, diagonal form tells us about the group theory – e.g. if ஑
ஒcan be 

diagonalised to

then it is invariant under SU(3) U(1)



SU(4) and SO(6)

For 4-component spinors, alternative decomposition is useful

Generators of SU(4) Generators of SO(6)

For details, see K J Barnes, J Hamilton-Charlton and T R Lawrence, How 
orbits of SU(N) can describe rotations in SO(6), (2001), J. Phys. A 34, 

10881

Thus can also be expressed as:

1

where and are all (complex) anti-symmetric matrices



From SO(6) parameters to SU(3) symmetry

• Eigenvalues are then determined by

• If eigenvalues are real, can be diagonalised using SU(4)

• Can therefore choose such that is invariant 
under SU(3) U(1)

• Again, these will be unbroken symmetries

• This is how we get colour SU(3) – the gauge group of the strong force 
– into the theory



Meaning of 

In fact, we don’t need – can obtain with desired diagonal form 
just using 

(This is not to say won’t play a role in the theory – that remains to be 
seen!)

So what are these ? Suggestion: ?



Covariant compactification – linear coordinate 
transformations and field configurations



Linear transformations

• Consider decompactification limit: flat N-dimensional spacetime

• Minkowski coordinates :

• Linear coordinate transformation:

• GL(N, ) 

• Tangent space is invariant under 



Symmetric field configurations - periodicity

Translation symmetry: 

– symmetric under translation 
through λ

Rotation symmetry:

– symmetric under rotation 
through π

λφ

π



Operators, eigenfunctions, eigenvalues

• Generated by differential operators, e.g. 

• Translations generated by భ, మ, య,…

• 2D rotations generated by 

• Eigenfunctions form basis:
• Fourier modes for translations
• Harmonics for rotations

• Eigenvalues inversely proportional to the period. These are the 
quantum numbers.



Translations and compactification

• On compactification, 

• Displacements:

• Extra dimensions:

• For spherical space, these are rotations



Compactification, rotations and harmonics

• Displacements don’t commute with each other, or with gauge 
transformations – e.g. for 2D, SO(3) SO(2)

• Field configurations: no longer any value of λ

• Instead, must be harmonics

(Theory then exploits loophole in O’Raifeartaigh’s theorem, as 
discussed briefly in T. Lawrence, Product manifolds as realisations of 
general linear symmetries, (2022), Int. J. Geom. Meth. Mod. Phys., 
doi:10.1142/S0219887822400060)



Covariant compactification – developing field 
equations



Bianchi identities

• So far, we have first stab at field equation for :

• We have compared with GR field equation

• But in GR, there is another constraint on geometry – Bianchi identity:

• It has a contracted form:



The full identity and the gauge field equation

• These are geometric facts – independent of geometry-matter relation

• Have implications for covariant compactification

• From the full Bianchi identity, we find

• RHS carries gauge field indices; transforms as Lorentz vector

• Perhaps: this eqn + field eqn for + constraints on 

?



The contracted identity & Noether’s theorem

• Now turn to contracted Bianchi identity

• Noether developed a theorem for conservation in GR

• Starts with

ఓఔ
ଵ/ଶ dΩ

• Carries out change of coordinates, which vanishes on a boundary

• Result:

ఓ ఔ
ఓ

– the contracted Bianchi identity



Questioning the principle of least action

• Now see: contracted identity = “conserved geometry”

• Also leads us to question:

Are action & principle of least action really fundamental?

• Why should action be extremised – under variation which vanishes on 
surface?



Field equation without least action?

Question: could we derive a field equation without using least action?

Answer: I think so – but does it have a “real world” solution?

Basic principles:

• ூ
௃ is scalar; under displacement (parallel transport) ூ

௃ is also scalar

• Same goes for ୍
୎

୎
୍ and ୍

୎
୎

୍

• We can then define a scalar field ρ as a ratio between variations

• Then

୍
୎

୎
୍ - ρ ூ

௃ = 0 

field equation. But solutions require better understanding of ୍
୎

୎
୍



Spinor field equation

• Can now speculate: what might spinor field equation look like

• Say

• Then look for = o

such that where  

• “square root” of field equation for 

• Eigenvalues of spacetime geometry

• ? Eigenvalues of geometry of curved complex space ?



Quantum numbers of the Standard Model



Counting fermion states

• Covariant compactification “GraviGUT” for fermions

• 1st generation – count states:
• Quarks: 2 (spin) x 2 (chirality) x 3 (colour) x 2 (weak isospin) = 24
• Charged leptons: 2 (spin) x 2 (chirality) x 1 (weak isospin) = 4
• Neutrinos: 2 (spin) x 2 (chirality) x 1 (weak isospin) = 4

• TOTAL = 32

• I have found explicit 32 x 32 forms for generators of 
(1,3) SU(3) SU(2) U(1)



How many dimensions does spacetime have?

• 2 families of SO groups have 32-component spinor:

• 32: SO(11), SO(1,10), SO(2,9), SO(3,8)...

• 16 16: SO(10), SO(1,9), SO(2,8), SO(3,7)...

• We need these to contain SO(1,3) and SO(6) ~ SU(4) SU(3) U(1)

• Thus two possibilities with one time dimension: SO(1,10), SO(1,9)

• Implies spacetime has 10 or 11 dimensions SUGRA, strings?



Next steps and outstanding questions

• Next steps:

1. express generators of 
(1,3) SU(3) SU(2) U(1)

in terms of Clifford algebra

2. Find induced action on vectors

• Big remaining questions:
• Fermion generations?
• Higgs?



Questions?


