Geometry, gravity and spin
Notes, ideas and developments

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu
Center of Excellence “The Dark Side of the Universe”

Ronin Institute - 21.02.2023
Outline

1. Bundles, connections, Cartan geometry
2. Unification of field theories from particle motion
3. Spinors and spontaneous symmetry breaking in gravity
4. Observers, Ashtekar variables and loop quantization
Outline

1. Bundles, connections, Cartan geometry
2. Unification of field theories from particle motion
3. Spinors and spontaneous symmetry breaking in gravity
4. Observers, Ashtekar variables and loop quantization
The associated bundle

\[P_x \times F \quad \{p\} \times F \]

\[(p, f) \mapsto p \]

\[(P \times \rho F)_x \]

\[(p, f) \mapsto [p, f] \]

\[P \]

\[P \times \rho F \]

\[\pi \]

\[\pi_\rho \]

\[M \]
The many faces of connections

\[j^1_{\pi(e)} \sigma = \omega(e) \]

\[\theta(w) = w_v \]

\[\eta(e, v) \]

\[\sigma^*(v') \]

\[\pi(e) \]

\[\pi_*(e) \]

\[\tau \]

\[\chi \]
A hamster’s perspective on Cartan geometry

- Cartan geometry: view from inside a hamster ball.
- All possible motions of the hamster: group G.
- Motions which will not move the ball: subgroup $H \subset G$.
- Cartan connection A connects motions of hamster and ball.
- Cartan curvature: difference between ball and surface geometry.

\[F = dA + \frac{1}{2}[A, A]. \]
Outline

1. Bundles, connections, Cartan geometry

2. Unification of field theories from particle motion

3. Spinors and spontaneous symmetry breaking in gravity

4. Observers, Ashtekar variables and loop quantization
Charged particle in gauge theory

Ingredients of the theory:
- Lie group K with Lie algebra \mathfrak{k}.
- Lie algebra generators (basis) T_A and structure constants f_{AB}^C:
 \[[T_A, T_B] = f_{AB}^C T_C. \] (1)
- Bilinear form $\beta_{AB} = \beta(T_A, T_B)$.
- Representation ρ of G inducing linear map $z^a \mapsto \rho_{ba}^a X^A z^b$.
Charged particle in gauge theory

- **Ingredients of the theory:**
 - Lie group K with Lie algebra \mathfrak{k}.
 - Lie algebra generators (basis) T_A and structure constants f_{AB}^C:
 \[
 [T_A, T_B] = f_{AB}^C T_C .
 \] (1)
 - Bilinear form $\beta_{AB} = \beta(T_A, T_B)$.
 - Representation ρ of G inducing linear map $z^a \mapsto \rho^a_{bA} X^A z^b$.

- **Dynamical variables in the theory:**
 - Gauge field A^A_μ with field strength $F = DA$:
 \[
 F^A_{\mu\nu} = \partial_\mu A^A_\nu - \partial_\nu A^A_\mu + A^B_\mu A^C_\nu f_{BC}^A .
 \] (2)
 - Particle at x^μ, velocity $v^\mu = \dot{x}^\mu$, isospin z^a.

1. Geodesic motion in general relativity:
 ○ Geodesic equation depends on connection coefficients $\Gamma^\mu_{\nu\rho}$:
 \[\ddot{x}^\mu + \Gamma^\mu_{\nu\rho} \dot{x}^\nu \dot{x}^\rho = 0. \] (3)
 ○ First order formulation with velocity coordinate $y^\mu = \dot{x}^\mu$:
 \[\dot{x}^\mu = y^\mu, \quad \dot{y}^\mu = -\Gamma^\mu_{\nu\rho} y^\nu y^\rho. \] (4)

2. Charged particle in Yang-Mills (non-abelian gauge) theory:
 ○ Internal degree of freedom:
 \[\dot{z}^a = -\rho_a^b A^b A^\mu z^b y^\mu. \] (5)
 ○ Force equation depending on curvature $F = D A^? \dot{y}^\mu$.
Particle motion in field theories

1. Geodesic motion in general relativity:
 - Geodesic equation depends on connection coefficients $\Gamma^\mu_{\nu\rho}$:
 \[
 \ddot{x}^\mu + \Gamma^\mu_{\nu\rho} \dot{x}^\nu \dot{x}^\rho = 0.
 \] (3)
 - First order formulation with velocity coordinate $y^\mu = \dot{x}^\mu$:
 \[
 \dot{x}^\mu = y^\mu, \quad \dot{y}^\mu = -\Gamma^\mu_{\nu\rho} y^\nu y^\rho.
 \] (4)

2. Charged particle in Yang-Mills (non-abelian gauge) theory:
 - Internal degree of freedom:
 \[
 \dot{z}^a = -\rho^a_{\ bA} A^A_\mu z^b y^\mu.
 \] (5)
 - Force equation depending on curvature $F = DA$?
 \[
 \dot{y}_\mu =? \]
 (6)
Particle motion in field theories

1. Geodesic motion in general relativity:
 - Geodesic equation depends on connection coefficients $\Gamma^\mu_{\nu\rho}$:
 \[\ddot{x}^\mu + \Gamma^\mu_{\nu\rho} \dot{x}^\nu \dot{x}^\rho = 0. \]
 (3)
 - First order formulation with velocity coordinate $y^\mu = \dot{x}^\mu$:
 \[\dot{x}^\mu = y^\mu, \quad \dot{y}^\mu = -\Gamma^\mu_{\nu\rho} y^\nu y^\rho. \]
 (4)

2. Charged particle in Yang-Mills (non-abelian gauge) theory:
 - Internal degree of freedom:
 \[\dot{z}^a = -\rho_{bA}^a A^A_{\mu} z^b y^\mu. \]
 (5)
 - Force equation depending on curvature $F = DA$?
 \[\dot{y}_\mu =? \]
 (6)

\[\Rightarrow\] Formal similarities - common geometric description?
1. Geodesic motion in general relativity:
 - Spacetime manifold M with Lorentzian metric g.
 - Orthonormal frame bundle P_0 is principal H_0-bundle, $H_0 = \text{SO}(1,3)$.
 - Tangent bundle $TM = P_0$ is associated to P_0.
 - $\Gamma^{\mu\nu\rho}$ induces Cartan connection on P.
 \Rightarrow Cartan geometry with model G_0/H_0 on P.

2. Include internal degrees of freedom:
 - Enlarge model geometry to G/H with $G = G_0 \times K$ and $H = H_0 \times K$.
 - Cartan connection A is g-valued 1-form on H-bundle P.
 - A splits into solder form, Levi-Civita & gauge connections.
 - Associated bundle $E = TM \times M$ includes velocity and isospin.
 \Rightarrow Combined description:
 - Field theory combines Palatini and Yang-Mills Lagrangians.
 - Particle equation of motion from Lagrangian with gauge coupling.
 - Particle trajectories as Integral curves of combined vector field.
Unified ansatz in Cartan geometry

1. Geodesic motion in general relativity:
 - Spacetime manifold M with Lorentzian metric g.
 - Orthonormal frame bundle P_0 is principal H_0-bundle, $H_0 = \text{SO}(1, 3)$.
 - Tangent bundle $TM = P_0$ is associated to P_0.
 - $\Gamma^\mu_{\nu\rho}$ induces Cartan connection on P.
 \Rightarrow Cartan geometry with model G_0/H_0 on P.

2. Include internal degrees of freedom:
 - Enlarge model geometry to G/H with $G = G_0 \times K$ and $H = H_0 \times K$.
 - Cartan connection A is g-valued 1-form on H-bundle P.
 - A splits into solder form, Levi-Civita & gauge connections.
 - Associated bundle $E = TM \times_M F$ includes velocity and isospin.
Unified ansatz in Cartan geometry

1. Geodesic motion in general relativity:
 - Spacetime manifold M with Lorentzian metric g.
 - Orthonormal frame bundle P_0 is principal H_0-bundle, $H_0 = \text{SO}(1,3)$.
 - Tangent bundle $TM = P_0$ is associated to P_0.
 - $\Gamma^\mu_{\nu\rho}$ induces Cartan connection on P.
 \Rightarrow Cartan geometry with model G_0/H_0 on P.

2. Include internal degrees of freedom:
 - Enlarge model geometry to G/H with $G = G_0 \times K$ and $H = H_0 \times K$.
 - Cartan connection A is g-valued 1-form on H-bundle P.
 - A splits into solder form, Levi-Civita & gauge connections.
 - Associated bundle $E = TM \times_M F$ includes velocity and isospin.

\hookrightarrow Combined description:
 - Field theory combines Palatini and Yang-Mills Lagrangians.
 - Particle equation of motion from Lagrangian with gauge coupling.
 - Particle trajectories as Integral curves of combined vector field.
Aside: time translation in Finsler-Cartan geometry

- Consider the fundamental vector field

 \[t = A(Z_0) = f_0^a \partial_a - f_j^a N^b a \bar{\partial}_b \quad \Leftrightarrow \quad \omega^{i \ j}(t) = 0, \quad e^i(t) = \delta^i_0. \quad (7) \]

- Integral curve \(\Gamma : \mathbb{R} \to P, \lambda \mapsto (x(\lambda), f(\lambda)) \) of \(t \).

- From \(e^i(t) = \delta^i_0 \) follows:

 \[\dot{x}^a = f_a^0. \quad (8) \]

 \(\Rightarrow (x, f^0) \) is the canonical lift of a curve from \(M \) to \(O \).

- From \(\omega^{i \ 0}(t) = 0 \) follows:

 \[0 = \dot{f}^a_0 + N^a b \dot{x}^b = \ddot{x}^a + N^a b \dot{x}^b. \quad (9) \]

 \(\Rightarrow (x, f^0) \) is a Finsler geodesic.

- From \(\omega^{\alpha \beta}(t) = 0 \) follows:

 \[0 = \dot{f}^a_{\alpha} + f^b_{\alpha} \dot{x}^c F^a_{bc} + (\dot{x}^d N^c d + \dot{f}^c_0) C^a_{bc} = \nabla (\dot{x}, \dot{f}^0) f^a_{\alpha}. \quad (10) \]

 \(\Rightarrow \) Frame \(f \) is parallely transported.
Aside: time translation in Finsler-Cartan geometry

- Consider the fundamental vector field
 \[t = A(Z_0) = f_0^a \partial_a - f_j^a N^b_a \bar{\partial}^j_b \iff \omega^i_j(t) = 0, \quad e^i(t) = \delta^i_0. \]
 \((7) \)

- Integral curve \(\Gamma : \mathbb{R} \rightarrow P, \lambda \mapsto (x(\lambda), f(\lambda)) \) of \(t \).

- From \(e^i(t) = \delta^i_0 \) follows:
 \[\dot{x}^a = f_0^a. \]
 \((8) \)

\[\Rightarrow (x, f_0) \] is the canonical lift of a curve from \(M \) to \(O \).
Aside: time translation in Finsler-Cartan geometry

- Consider the fundamental vector field
 \[\mathbf{t} = A(Z_0) = f^a_0 \partial_a - f^a_j \mathcal{N}^b_{a} \bar{\partial}^j_b \iff \omega^i_j(\mathbf{t}) = 0, \quad e^i(\mathbf{t}) = \delta^i_0. \]
 \hspace{2cm} (7)

- Integral curve \(\Gamma : \mathbb{R} \to P, \lambda \mapsto (x(\lambda), f(\lambda)) \) of \(\mathbf{t} \).
- From \(e^i(\mathbf{t}) = \delta^i_0 \) follows:
 \[\dot{x}^a = f^a_0. \]
 \hspace{2cm} (8)

 \((x, f_0) \) is the canonical lift of a curve from \(M \) to \(O \).
- From \(\omega^i_0(\mathbf{t}) = 0 \) follows:
 \[0 = \dot{f}^a_0 + \mathcal{N}^a_{b} \dot{x}^b = \ddot{x}^a + \mathcal{N}^a_{b} \dot{x}^b. \]
 \hspace{2cm} (9)

 \((x, f_0) \) is a Finsler geodesic.
Aside: time translation in Finsler-Cartan geometry

Consider the fundamental vector field
\[\mathbf{t} = A(Z_0) = f_0^a \partial_a - f_j^a N^b_a \partial^j_b \quad \Leftrightarrow \quad \omega^i_j(\mathbf{t}) = 0, \quad e^i(\mathbf{t}) = \delta^i_0. \quad (7) \]

Integral curve \(\Gamma : \mathbb{R} \to \mathcal{P}, \lambda \mapsto (x(\lambda), f(\lambda)) \) of \(\mathbf{t} \).

From \(e^i(\mathbf{t}) = \delta^i_0 \) follows:
\[\dot{x}^a = f_0^a. \quad (8) \]
\[\Rightarrow (x, f_0) \) is the canonical lift of a curve from \(M \) to \(O. \)

From \(\omega^i_0(\mathbf{t}) = 0 \) follows:
\[0 = \dot{f}_0^a + N^a_b \dot{x}^b = \ddot{x}^a + N^a_b \dot{x}^b. \quad (9) \]
\[\Rightarrow (x, f_0) \) is a Finsler geodesic.

From \(\omega^\alpha_\beta(\mathbf{t}) = 0 \) follows:
\[0 = \dot{f}_\alpha^a + f_\alpha^b \left(\dot{x}^c F^a_{bc} + (\dot{x}^d N^c_d + \dot{f}_0^c) C^a_{bc} \right) = \nabla_{(\dot{x}, \dot{f}_0)} f_\alpha^a. \quad (10) \]
\[\Rightarrow \text{Frame } f \text{ is parallely transported.} \]
Outline

1. Bundles, connections, Cartan geometry
2. Unification of field theories from particle motion
3. Spinors and spontaneous symmetry breaking in gravity
4. Observers, Ashtekar variables and loop quantization
Stelle-West action uses g-valued curvature form F^{AB}:

$$S = \int_M \epsilon_{ABCDE} y^A F^{BC} \wedge F^{DE}.$$ \hspace{1cm} (11)
• Stelle-West action uses g-valued curvature form F^{AB}:

$$S = \int_M \epsilon_{ABCDE} y^A F^{BC} \wedge F^{DE}.$$ \hspace{1cm} (11)

• Symmetry breaking: $(y^a) = (y^0, y^1, y^2, y^3) = (0, 0, 0, 0)$, $y^4 = 1$.

• Cartan curvature F^{ab} gives Palatini action.

• Idea: symmetry breaking field $y^A = \bar{\Psi} \Gamma^A \Psi$ with higher spinor Ψ.

Stelle-West action uses \mathfrak{g}-valued curvature form F^{AB}:

$$S = \int_M \epsilon_{ABCDE} y^A F^{BC} \wedge F^{DE}. \quad (11)$$

Symmetry breaking: $(y^a) = (y^0, y^1, y^2, y^3) = (0, 0, 0, 0), \ y^4 = 1$.

\Rightarrow MacDowell-Mansouri action contains only \mathfrak{h}-valued part F^{ab}:

$$S = \int_M \epsilon_{abcd} F^{ab} \wedge F^{cd}. \quad (12)$$
• Stelle-West action uses g-valued curvature form F^{AB}:

$$S = \int_M \epsilon_{ABCDE} y^A F^{BC} \wedge F^{DE}. \quad (11)$$

• Symmetry breaking: $(y^a) = (y^0, y^1, y^2, y^3) = (0, 0, 0, 0), \ y^4 = 1.$

\Rightarrow MacDowell-Mansouri action contains only \mathfrak{h}-valued part F^{ab}:

$$S = \int_M \epsilon_{abcd} F^{ab} \wedge F^{cd}. \quad (12)$$

• Cartan curvature $F^{ab} = R^{ab} + e^a \wedge e^b$ gives Palatini action.
• Stelle-West action uses \mathfrak{g}-valued curvature form F^{AB}:

$$S = \int_M \epsilon_{ABCDE} y^A F^{BC} \wedge F^{DE}. \quad (11)$$

• Symmetry breaking: $(y^a) = (y^0, y^1, y^2, y^3) = (0, 0, 0, 0)$, $y^4 = 1$.

\Rightarrow MacDowell-Mansouri action contains only \mathfrak{h}-valued part F^{ab}:

$$S = \int_M \epsilon_{abcd} F^{ab} \wedge F^{cd}. \quad (12)$$

• Cartan curvature $F^{ab} = R^{ab} + e^a \wedge e^b$ gives Palatini action.

• Idea: symmetry breaking field $y^A = \bar{\Psi} \Gamma^A \psi$ with higher spinor Ψ??
Dirac-Cartan-Higgs action and symmetry breaking

- **Ingredients:**
 - Spin groups \tilde{G} and \tilde{H}: double covers of G and H.
 - Spin frame bundle \tilde{P} is principal \tilde{H} bundle.
 - Right action of \tilde{H} on \tilde{G} yields principal \tilde{G}-bundle $\tilde{Q} = \tilde{P} \times_{\tilde{H}} \tilde{G}$.
 - Levi-Civita connection gives Ehresmann connection \tilde{A}^{AB} on \tilde{Q}.
 - “Higher” spinor Ψ: section of bundle associated to \tilde{Q}.
 - Dirac matrices Γ^A acting on Ψ.

- **Construction of Dirac-Cartan-Higgs action:**
 - Exterior covariant derivative of higher spinor:
 \[
 D\Psi = d\Psi + \frac{1}{8} \tilde{A}^{AB} \wedge [\Gamma^A, \Gamma^B] \Psi.
 \] (13)
 - Dirac-Cartan operator:
 \[
 \mathcal{D}\Psi = \rho([E^A, E^B]) \tilde{A}^{AB} \mathcal{D}\Psi.
 \] (14)
 - Dirac-Cartan-Higgs action:
 \[
 L = \bar{\Psi} \mathcal{D}\Psi + m \bar{\Psi}\Psi - \lambda (\bar{\Psi}\Psi)^2.
 \] (15)
Dirac-Cartan-Higgs action and symmetry breaking

- **Ingredients:**
 - Spin groups \tilde{G} and \tilde{H}: double covers of G and H.
 - Spin frame bundle \tilde{P} is principal \tilde{H} bundle.
 - Right action of \tilde{H} on \tilde{G} yields principal \tilde{G}-bundle $\tilde{Q} = \tilde{P} \times_{\tilde{H}} \tilde{G}$.
 - Levi-Civita connection gives Ehresmann connection \tilde{A}^{AB} on \tilde{Q}.
 - “Higher” spinor Ψ: section of bundle associated to \tilde{Q}.
 - Dirac matrices Γ^A acting on Ψ.

- **Construction of Dirac-Cartan-Higgs action:**
 - Exterior covariant derivative of higher spinor:
 \[D\Psi = d\Psi + \frac{1}{8} \tilde{A}^{AB} \wedge [\Gamma_A, \Gamma_B] \Psi. \] \hspace{1cm} (13)
 - Dirac-Cartan operator:
 \[\slashed{D} \Psi = \rho([\slashed{E}^A, \slashed{E}^B]) \tilde{A}^{AB} - D\Psi. \] \hspace{1cm} (14)
 - Dirac-Cartan-Higgs action:
 \[\mathcal{L} = \bar{\Psi} \slashed{D} \Psi + m\bar{\Psi} \Psi - \lambda (\bar{\Psi} \Psi)^2. \] \hspace{1cm} (15)
1. Bundles, connections, Cartan geometry
2. Unification of field theories from particle motion
3. Spinors and spontaneous symmetry breaking in gravity
4. Observers, Ashtekar variables and loop quantization
• Lorentz group H contains rotation subgroup $K \subset H$.
• Principal bundle P of frames reduces to K-bundle.
• Base space: “observer space” O of normalized velocities.
• Transition to spin groups \bar{G}, \bar{H}, \bar{K}.
• Cartan connection contains \mathfrak{k}-valued part.

\Rightarrow Ashtekar variables.