Geometry, gravity and spin Notes, ideas and developments

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

Ronin Institute - 21.02.2023

Motivating questions

Outline

(1) Bundles, connections, Cartan geometry
(2) Unification of field theories from particle motion
(3) Spinors and spontaneous symmetry breaking in gravity
4. Observers, Ashtekar variables and loop quantization

Outline

(1) Bundles, connections, Cartan geometry
(2) Unification of field theories from particle motion
(3) Spinors and spontaneous symmetry breaking in gravity
(4) Observers, Ashtekar variables and loop quantization

The associated bundle

The many faces of connections

A hamster's perspective on Cartan geomeetry

- Cartan geometry: view from inside a Hamsster ball.
- All possible motions of the hamster: group G.
- Motions which will not move the ball: subgroup $H \subset G$.
- Cartan connection A connects motions of hamster and ball.
- Cartan curvature: difference between ball and surface geometry.

$$
F=d A+\frac{1}{2}[A, A] .
$$

Outline

(1) Bundles, connections, Cartan geometry
(2) Unification of field theories from particle motion
(3) Spinors and spontaneous symmetry breaking in gravity
(4) Observers, Ashtekar variables and loop quantization

Charged particle in gauge theory

- Ingredients of the theory:
- Lie group K with Lie algebra \mathfrak{k}.
- Lie algebra generators (basis) T_{A} and structure constants $f_{A B}{ }^{C}$:

$$
\begin{equation*}
\left[T_{A}, T_{B}\right]=f_{A B}^{c} T_{C} \tag{1}
\end{equation*}
$$

- Bilinear form $\beta_{A B}=\beta\left(T_{A}, T_{B}\right)$.
- Representation ρ of G inducing linear map $z^{a} \mapsto \rho^{a}{ }_{b A} X^{A} z^{b}$.

Charged particle in gauge theory

- Ingredients of the theory:
- Lie group K with Lie algebra \mathfrak{k}.
- Lie algebra generators (basis) T_{A} and structure constants $f_{A B}{ }^{C}$:

$$
\begin{equation*}
\left[T_{A}, T_{B}\right]=f_{A B}^{c} T_{C} \tag{1}
\end{equation*}
$$

- Bilinear form $\beta_{A B}=\beta\left(T_{A}, T_{B}\right)$.
- Representation ρ of G inducing linear map $z^{a} \mapsto \rho^{a}{ }_{b A} X^{A} z^{b}$.
- Dynamical variables in the theory:
- Gauge field A_{μ}^{A} with field strength $F=\mathrm{DA}$:

$$
\begin{equation*}
F^{A}{ }_{\mu \nu}=\partial_{\mu} A^{A}{ }_{\nu}-\partial_{\nu} A^{A}{ }_{\mu}+A^{B}{ }_{\mu} A^{C}{ }_{\nu} f_{B C}{ }^{A} . \tag{2}
\end{equation*}
$$

- Particle at x^{μ}, velocity $y^{\mu}=\dot{x}^{\mu}$, isospin z^{a}.

Particle motion in field theories

1. Geodesic motion in general relativity:

- Geodesic equation depends on connection coefficients $\Gamma^{\mu}{ }_{\nu \rho}$:

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=0 . \tag{3}
\end{equation*}
$$

- First order formulation with velocity coordinate $y^{\mu}=\dot{x}^{\mu}$:

$$
\begin{equation*}
\dot{x}^{\mu}=y^{\mu}, \quad \dot{y}^{\mu}=-\Gamma^{\mu}{ }_{\nu \rho} y^{\nu} y^{\rho} . \tag{4}
\end{equation*}
$$

Particle motion in field theories

1. Geodesic motion in general relativity:

- Geodesic equation depends on connection coefficients $\Gamma^{\mu}{ }_{\nu \rho}$:

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma_{\nu \rho}^{\mu} \dot{x}^{\nu} \dot{x}^{\rho}=0 . \tag{3}
\end{equation*}
$$

- First order formulation with velocity coordinate $y^{\mu}=\dot{x}^{\mu}$:

$$
\begin{equation*}
\dot{x}^{\mu}=y^{\mu}, \quad \dot{y}^{\mu}=-\Gamma^{\mu}{ }_{\nu \rho} y^{\nu} y^{\rho} . \tag{4}
\end{equation*}
$$

2. Charged particle in Yang-Mills (non-abelian gauge) theory:

- Internal degree of freedom:

$$
\begin{equation*}
\dot{z}^{a}=-\rho^{a}{ }_{b A} A_{\mu}^{A} z^{b} y^{\mu} . \tag{5}
\end{equation*}
$$

- Force equation depending on curvature $F=\mathrm{DA}$?

$$
\begin{equation*}
\dot{y}_{\mu}=? \tag{6}
\end{equation*}
$$

Particle motion in field theories

1. Geodesic motion in general relativity:

- Geodesic equation depends on connection coefficients $\Gamma^{\mu}{ }_{\nu \rho}$:

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma_{\nu \rho}^{\mu} \dot{x}^{\nu} \dot{x}^{\rho}=0 . \tag{3}
\end{equation*}
$$

- First order formulation with velocity coordinate $y^{\mu}=\dot{x}^{\mu}$:

$$
\begin{equation*}
\dot{x}^{\mu}=y^{\mu}, \quad \dot{y}^{\mu}=-\Gamma^{\mu}{ }_{\nu \rho} y^{\nu} y^{\rho} . \tag{4}
\end{equation*}
$$

2. Charged particle in Yang-Mills (non-abelian gauge) theory:

- Internal degree of freedom:

$$
\begin{equation*}
\dot{z}^{a}=-\rho^{a}{ }_{b A} A_{\mu}^{A} z^{b} y^{\mu} . \tag{5}
\end{equation*}
$$

- Force equation depending on curvature $F=\mathrm{DA}$?

$$
\begin{equation*}
\dot{y}_{\mu}=? \tag{6}
\end{equation*}
$$

\rightsquigarrow Formal similarities - common geometric description?

Unified ansatz in Cartan geometry

1. Geodesic motion in general relativity:

- Spacetime manifold M with Lorentzian metric g.
- Orthonormal frame bundle P_{0} is principal H_{0}-bundle, $H_{0}=\mathrm{SO}(1,3)$.
- Tangent bundle TM $=P_{0}$ is associated to P_{0}.
- $\Gamma^{\mu}{ }_{\nu \rho}$ induces Cartan connection on P.
\Rightarrow Cartan geometry with model G_{0} / H_{0} on P.

Unified ansatz in Cartan geometry

1. Geodesic motion in general relativity:

- Spacetime manifold M with Lorentzian metric g.
- Orthonormal frame bundle P_{0} is principal H_{0}-bundle, $H_{0}=\mathrm{SO}(1,3)$.
- Tangent bundle TM $=P_{0}$ is associated to P_{0}.
- $\Gamma^{\mu}{ }_{\nu \rho}$ induces Cartan connection on P.
\Rightarrow Cartan geometry with model G_{0} / H_{0} on P.

2. Include internal degrees of freedom:

- Enlarge model geometry to G / H with $G=G_{0} \times K$ and $H=H_{0} \times K$.
- Cartan connection A is \mathfrak{g}-valued 1 -form on H-bundle P.
- A splits into solder form, Levi-Civita \& gauge connections.
- Associated bundle $E=T M \times_{M} F$ includes velocity and isospin.

Unified ansatz in Cartan geometry

1. Geodesic motion in general relativity:

- Spacetime manifold M with Lorentzian metric g.
- Orthonormal frame bundle P_{0} is principal H_{0}-bundle, $H_{0}=\mathrm{SO}(1,3)$.
- Tangent bundle TM $=P_{0}$ is associated to P_{0}.
- $\Gamma^{\mu}{ }_{\nu \rho}$ induces Cartan connection on P.
\Rightarrow Cartan geometry with model G_{0} / H_{0} on P.

2. Include internal degrees of freedom:

- Enlarge model geometry to G / H with $G=G_{0} \times K$ and $H=H_{0} \times K$.
- Cartan connection A is \mathfrak{g}-valued 1 -form on H-bundle P.
- A splits into solder form, Levi-Civita \& gauge connections.
- Associated bundle $E=T M \times_{M} F$ includes velocity and isospin.
\rightsquigarrow Combined description:
- Field theory combines Palatini and Yang-Mills Lagrangians.
- Particle equation of motion from Lagrangian with gauge coupling.
- Particle trajectories as Integral curves of combined vector field.

Aside: time translation in Finsler-Cartan geometry

- Consider the fundamental vector field

$$
\begin{equation*}
\mathbf{t}=\underline{A}\left(\mathcal{Z}_{0}\right)=f_{0}^{a} \partial_{a}-f_{j}^{a} N^{b}{ }_{a} \bar{\partial}_{b}^{j} \quad \Leftrightarrow \quad \omega^{i}{ }_{j}(\mathbf{t})=0, \quad e^{i}(\mathbf{t})=\delta_{0}^{i} . \tag{7}
\end{equation*}
$$

- Integral curve $\Gamma: \mathbb{R} \rightarrow P, \lambda \mapsto(x(\lambda), f(\lambda))$ of \mathbf{t}.

Aside: time translation in Finsler-Cartan geometry

- Consider the fundamental vector field

$$
\begin{equation*}
\mathbf{t}=\underline{A}\left(\mathcal{Z}_{0}\right)=f_{0}^{a} \partial_{a}-f_{j}^{a} N^{b}{ }_{a} \bar{\partial}_{b}^{j} \quad \Leftrightarrow \quad \omega^{i}{ }_{j}(\mathbf{t})=0, \quad e^{i}(\mathbf{t})=\delta_{0}^{i} . \tag{7}
\end{equation*}
$$

- Integral curve $\Gamma: \mathbb{R} \rightarrow P, \lambda \mapsto(x(\lambda), f(\lambda))$ of \mathbf{t}.
- From $e^{i}(\mathbf{t})=\delta_{0}^{i}$ follows:

$$
\begin{equation*}
\dot{x}^{a}=f_{0}^{a} \tag{8}
\end{equation*}
$$

$\Rightarrow\left(x, f_{0}\right)$ is the canonical lift of a curve from M to O.

Aside: time translation in Finsler-Cartan geometry

- Consider the fundamental vector field

$$
\begin{equation*}
\mathbf{t}=\underline{A}\left(\mathcal{Z}_{0}\right)=f_{0}^{a} \partial_{a}-f_{j}^{a} N^{b}{ }_{a} \bar{\partial}_{b}^{j} \quad \Leftrightarrow \quad \omega^{i}{ }_{j}(\mathbf{t})=0, \quad e^{i}(\mathbf{t})=\delta_{0}^{i} . \tag{7}
\end{equation*}
$$

- Integral curve $\Gamma: \mathbb{R} \rightarrow P, \lambda \mapsto(x(\lambda), f(\lambda))$ of \mathbf{t}.
- From $e^{i}(\mathbf{t})=\delta_{0}^{i}$ follows:

$$
\begin{equation*}
\dot{x}^{a}=f_{0}^{a} \tag{8}
\end{equation*}
$$

$\Rightarrow\left(x, f_{0}\right)$ is the canonical lift of a curve from M to O.

- From $\omega^{i}{ }_{0}(\mathbf{t})=0$ follows:

$$
\begin{equation*}
0=\dot{f}_{0}^{a}+N^{a}{ }_{b} \dot{x}^{b}=\ddot{x}^{a}+N^{a}{ }_{b} \dot{x}^{b} . \tag{9}
\end{equation*}
$$

$\Rightarrow\left(x, f_{0}\right)$ is a Finsler geodesic.

Aside: time translation in Finsler-Cartan geometry

- Consider the fundamental vector field

$$
\begin{equation*}
\mathbf{t}=\underline{A}\left(\mathcal{Z}_{0}\right)=f_{0}^{a} \partial_{a}-f_{j}^{a} N^{b}{ }_{a} \bar{\partial}_{b}^{j} \quad \Leftrightarrow \quad \omega_{j}^{i}(\mathbf{t})=0, \quad e^{i}(\mathbf{t})=\delta_{0}^{i} . \tag{7}
\end{equation*}
$$

- Integral curve $\Gamma: \mathbb{R} \rightarrow P, \lambda \mapsto(x(\lambda), f(\lambda))$ of \mathbf{t}.
- From $e^{i}(\mathbf{t})=\delta_{0}^{i}$ follows:

$$
\begin{equation*}
\dot{x}^{a}=f_{0}^{a} \tag{8}
\end{equation*}
$$

$\Rightarrow\left(x, f_{0}\right)$ is the canonical lift of a curve from M to O.

- From $\omega^{i}{ }_{0}(\mathbf{t})=0$ follows:

$$
\begin{equation*}
0=\dot{f}_{0}^{a}+N^{a}{ }_{b} \dot{x}^{b}=\ddot{x}^{a}+N^{a}{ }_{b} \dot{x}^{b} . \tag{9}
\end{equation*}
$$

$\Rightarrow\left(x, f_{0}\right)$ is a Finsler geodesic.

- From $\omega^{\alpha}{ }_{\beta}(\mathbf{t})=0$ follows:

$$
\begin{equation*}
0=\dot{f}_{\alpha}^{a}+f_{\alpha}^{b}\left(\dot{x}^{c} F_{b c}^{a}+\left(\dot{x}^{d} N_{d}^{c}+\dot{f}_{0}^{c}\right) C_{b c}^{a}\right)=\nabla_{\left(\dot{x}, \dot{f}_{0}\right)} f_{\alpha}^{a} . \tag{10}
\end{equation*}
$$

\Rightarrow Frame f is parallely transported.

Outline

(9) Bundles, connections, Cartan geometry
(2) Unification of field theories from particle motion
(3) Spinors and spontaneous symmetry breaking in gravity

4. Observers, Ashtekar variables and loop quantization

From Stelle-West to MacDowell-Mansouri

- Stelle-West action uses \mathfrak{g}-valued curvature form $F^{A B}$:

$$
\begin{equation*}
S=\int_{M} \epsilon_{A B C D E} y^{A} F^{B C} \wedge F^{D E} \tag{11}
\end{equation*}
$$

From Stelle-West to MacDowell-Mansouri

- Stelle-West action uses \mathfrak{g}-valued curvature form $F^{A B}$:

$$
\begin{equation*}
S=\int_{M} \epsilon_{A B C D E} y^{A} F^{B C} \wedge F^{D E} \tag{11}
\end{equation*}
$$

- Symmetry breaking: $\left(y^{a}\right)=\left(y^{0}, y^{1}, y^{2}, y^{3}\right)=(0,0,0,0), y^{4}=1$.

From Stelle-West to MacDowell-Mansouri

- Stelle-West action uses \mathfrak{g}-valued curvature form $F^{A B}$:

$$
\begin{equation*}
S=\int_{M} \epsilon_{A B C D E} y^{A} F^{B C} \wedge F^{D E} \tag{11}
\end{equation*}
$$

- Symmetry breaking: $\left(y^{a}\right)=\left(y^{0}, y^{1}, y^{2}, y^{3}\right)=(0,0,0,0), y^{4}=1$.
\Rightarrow MacDowell-Mansouri action contains only \mathfrak{h}-valued part $F^{\text {ab }}$:

$$
\begin{equation*}
S=\int_{M} \epsilon_{a b c d} F^{a b} \wedge F^{c d} \tag{12}
\end{equation*}
$$

From Stelle-West to MacDowell-Mansouri

- Stelle-West action uses \mathfrak{g}-valued curvature form $F^{A B}$:

$$
\begin{equation*}
S=\int_{M} \epsilon_{A B C D E} y^{A} F^{B C} \wedge F^{D E} \tag{11}
\end{equation*}
$$

- Symmetry breaking: $\left(y^{a}\right)=\left(y^{0}, y^{1}, y^{2}, y^{3}\right)=(0,0,0,0), y^{4}=1$.
\Rightarrow MacDowell-Mansouri action contains only \mathfrak{h}-valued part $F^{a b}$:

$$
\begin{equation*}
S=\int_{M} \epsilon_{a b c d} F^{a b} \wedge F^{c d} \tag{12}
\end{equation*}
$$

- Cartan curvature $F^{a b}=R^{a b}+e^{a} \wedge e^{b}$ gives Palatini action.

From Stelle-West to MacDowell-Mansouri

- Stelle-West action uses \mathfrak{g}-valued curvature form $F^{A B}$:

$$
\begin{equation*}
S=\int_{M} \epsilon_{A B C D E} y^{A} F^{B C} \wedge F^{D E} \tag{11}
\end{equation*}
$$

- Symmetry breaking: $\left(y^{a}\right)=\left(y^{0}, y^{1}, y^{2}, y^{3}\right)=(0,0,0,0), y^{4}=1$.
\Rightarrow MacDowell-Mansouri action contains only \mathfrak{h}-valued part $F^{a b}$:

$$
\begin{equation*}
S=\int_{M} \epsilon_{a b c d} F^{a b} \wedge F^{c d} \tag{12}
\end{equation*}
$$

- Cartan curvature $F^{a b}=R^{a b}+e^{a} \wedge e^{b}$ gives Palatini action.
- Idea: symmetry breaking field $y^{A}=\bar{\Psi} \Gamma^{A} \Psi$ with higher spinor Ψ ?

Dirac-Cartan-Higgs action and symmetry breaking

- Ingredients:
- Spin groups \bar{G} and \bar{H} : double covers of G and H.
- Spin frame bundle \bar{P} is principal \bar{H} bundle.
- Right action of \bar{H} on \bar{G} yields principal \bar{G}-bundle $\bar{Q}=\bar{P} \times_{\bar{H}} \bar{G}$.
- Levi-Civita connection gives Ehresmann connection $\tilde{A}^{A B}$ on \bar{Q}.
- "Higher" spinor Ψ : section of bundle associated to \bar{Q}.
- Dirac matrices Γ^{A} acting on Ψ.

Dirac-Cartan-Higgs action and symmetry breaking

- Ingredients:
- Spin groups \bar{G} and \bar{H} : double covers of G and H.
- Spin frame bundle \bar{P} is principal \bar{H} bundle.
- Right action of \bar{H} on \bar{G} yields principal \bar{G}-bundle $\bar{Q}=\bar{P} \times_{\bar{H}} \bar{G}$.
- Levi-Civita connection gives Ehresmann connection $\tilde{A}^{A B}$ on \bar{Q}.
- "Higher" spinor Ψ : section of bundle associated to \bar{Q}.
- Dirac matrices Γ^{A} acting on ψ.
- Construction of Dirac-Cartan-Higgs action:
- Exterior covariant derivative of higher spinor:

$$
\begin{equation*}
\mathrm{D} \psi=\mathrm{d} \Psi+\frac{1}{8} \tilde{A}^{A B} \wedge\left[\Gamma_{A}, \Gamma_{B}\right] \Psi . \tag{13}
\end{equation*}
$$

- Dirac-Cartan operator:

$$
\begin{equation*}
\left.\not D \Psi=\rho\left(\left[\mathbb{E}^{A}, \mathbb{E}^{B}\right]\right) \tilde{\underline{A}}_{A B}\right\lrcorner \mathrm{D} \Psi . \tag{14}
\end{equation*}
$$

- Dirac-Cartan-Higgs action:

$$
\begin{equation*}
\mathcal{L}=\bar{\Psi} \not D \Psi+m \bar{\Psi} \Psi-\lambda(\bar{\Psi} \Psi)^{2} . \tag{15}
\end{equation*}
$$

Outline

(9) Bundles, connections, Cartan geometry
(2) Unification of field theories from particle motion
(3) Spinors and spontaneous symmetry breaking in gravity

44 Observers, Ashtekar variables and loop quantization

Sketch

- Lorentz group H contains rotation subgroup $K \subset H$.
- Principal bundle P of frames reduces to K-bundle.
- Base space: "observer space" O of normalized velocities.
- Transition to spin groups $\bar{G}, \bar{H}, \bar{K}$.
- Cartan connection contains \mathfrak{k}-valued part.
\Rightarrow Ashtekar variables.

